A general framework for validated continuation of periodic orbits in systems of polynomial ODEs
نویسندگان
چکیده
In this paper a parametrized Newton-Kantorovich approach is applied to continuation of periodic orbits in arbitrary polynomial vector fields. This allows us rigorously validate numerically computed branches solutions. We derive the estimates full generality and present sample proofs obtained using an implementation Matlab. The presented applicable any field order dimension. A variety examples illustrate efficacy method.
منابع مشابه
Continuation of Bifurcations of Periodic Orbits for Large-Scale Systems
A methodology to track bifurcations of periodic orbits in large-scale dissipative systems depending on two parameters is presented. It is based on the application of iterative Newton–Krylov techniques to extended systems. To evaluate the action of the Jacobian it is necessary to integrate variational equations up to second order. It is shown that this is possible by integrating systems of dimen...
متن کاملnetwork of phonological rules in lori dialect of andimeshk: a study within the framework of post-generative approach.
پژوهش حاضر ارائه ی توصیفی است از نظام آوایی گویش لری شهر اندیمشک، واقع در شمال غربی استان خوزستان. چهارچوب نظری این پژوهش، انگاره ی پسازایشی جزءمستقل می باشد. این پایان نامه شامل موارد زیر است: -توصیف آواهای این گویش به صورت آواشناسی سنتی و در قالب مختصه های زایشی ممیز، همراه با آوانوشته ی تفصیلی؛ -توصیف نظام آوایی گویش لری و قواعد واجی آن در چهارچوب انگاره ی پسازایشی جزءمستقل و معرفی برهم کن...
Numerical Continuation of Hamiltonian Relative Periodic Orbits
The bifurcation theory and numerics of periodic orbits of general dynamical systems is well developed, and in recent years there has been rapid progress in the development of a bifurcation theory for dynamical systems with structure, such as symmetry or symplecticity. But as yet there are few results on the numerical computation of those bifurcations. The methods we present in this paper are a ...
متن کاملNumerical Continuation of Symmetric Periodic Orbits
The bifurcation theory and numerics of periodic orbits of general dynamical systems is well developed, and in recent years there has been rapid progress in the development of a bifurcation theory for symmetric dynamical systems. But there are hardly any results on the numerical computation of those bifurcations yet. In this paper we show how spatiotemporal symmetries of periodic orbits can be e...
متن کاملExperimental continuation of periodic orbits through a fold.
We present a continuation method that enables one to track or continue branches of periodic orbits directly in an experiment when a parameter is changed. A control-based setup in combination with Newton iterations ensures that the periodic orbit can be continued even when it is unstable. This is demonstrated with the continuation of initially stable rotations of a vertically forced pendulum exp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of computational dynamics
سال: 2021
ISSN: ['2158-2491', '2158-2505']
DOI: https://doi.org/10.3934/jcd.2021004